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Tumor Microenvironment Tilling the Soil
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ABSTRACT

The cells surrounding a tumor make up a molecular micro-
environment known as the stroma. The stroma can be influ-
enced and can in turn influence the growth and formation of 
tumors and new metastases. Origination of this microenvi-
ronment can be linked to the “seed and soil” concept with 
the original cancer cells, termed “seeds,” and the microen-
vironment, termed “soil.” The “soil” made up of the proteins, 
growth factors, and other non-tumor cells is a crucial part of 
tumor formation, invasion, and metastasis. It is important to 
consider and understand the interplay between the microen-
vironment and tumors when pursuing future therapeutics for 
cancers.
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INTRODUCTION

Head-and-neck cancers are the sixth most common 
malignancy worldwide, and squamous cell carci-
nomas (SCC) comprise the majority of cases. SCC is 
the most common oral cavity cancer. It is the eight 
most common cancers in men and fifth most common 
in women. Tobacco use in various forms (smoking, 
chewing, and snuff dipping) and alcohol consump-
tion both are major risk factors for oral cavity can-
cer. Frequent use beta-carotene and Vitamin E reduce 
the risk of oral SCC (OSCC).[1,2] Evidence shows that 
the human papillomavirus (HPV) has an oncogenic 
role; however, it is likely to be small. In spite 5 Years, 
survival rate after diagnosis remains low due to uncon-
trolled or recurrent tumors and lack of suitable markers 
for early detection.[3]
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CLINICAL PARAMETERS

Age and Sex

Age and sex were reportedly not associated with a 
survival rate in OSCC. According to Fan et al., the 5-year 
survival rate and disease-free survival rate were 61% 
and 75.5%, respectively, among OSCC patients under 
the age of 45.

Tobacco and Alcohol

There is a higher survival rate in non-smokers and 
non-drinkers, but there is no difference between ever 
smokers and current smokers. Fang et al. showed that 
smoking was associated with an approximately 2-fold 
increase in the risk of recurrence and 5-fold increase in 
the risk for disease-related death.

Tumor Staging

Most survival rate is tumor staging “by assessing the 
primary tumor size and cervical lymph node status.” 
It should be noted that TNM staging alone cannot pre-
dict prognosis. Other tumor characteristics particu-
larly histologic parameters must be utilized to identify 
the prognosis and select favorable treatment.

Locoregional Recurrence (LRR)

Type of treatment, the presence of lymphovascular 
permeation, and observation of malignant cells micro-
scopically in muscle, excluding “the extrinsic muscles 
of the tongue, pterygoid, and master muscles” can 
affect LRR.

Lymph Node Metastasis

Several studies have indicated the involvement of cer-
vical lymph node in OSCC patients. Regarding the role 
of lymph node metastasis in prognosis, radical neck dis-
section is performed when patients present with palpa-
ble (N+) cervical lymphadenopathy.

Histologic Grading

The histologic grading is used to predict the clinical 
behavior of OSCC for many decades, but its prognos-
tic value is still controversial. Anneroth’s classification 
considers the degree of cell differentiation and kerati-
nization, as well as pattern and stage of invasion, and 
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lymphoplasmocytic infiltration. Degree of cell differen-
tiation, keratinization, and pattern of invasion correlate 
with survival rate, and among OSCC patients; the pat-
tern of invasion is an independent prognostic factor of 
survival rate and lymph node metastasis. It is found 
that there is 44% decrease in survival rate per grade in 
OSCC. showed 44% decrease in survival rate per grade 
in OSCC.[4,5]

Perineural invasion

Perineural invasion correlates with larger tumor size, 
higher depth of tumor invasion, risk of nodal metastasis, 
and lower 5-year survival rates in patient with OSCC.

Surgical margins

Pathologic positive margin has been proven to be an 
adverse prognostic factor for OSCC patients, which 
apparently correlates with local recurrence and overall 
survival. The 5-year OS in early-stage OSCC patients 
with safe margin, positive margin, and close margin has 
been reported 78.2%, 61.4%, and 50.8%, respectively. 
Surgical clear margins > 5 mm are recommended to pre-
vent local recurrence.

Extracapsular spread (ECS) and depth of invasion

ECS de-extranodal extension of metastatic deposit out-
side the lymph node correlation between ECS and lower 
OS and decreasing survival rate between 29% and 60% 
when ECS is present. Liao et al. found that tumor thick-
ness <10 mm is an independent prognostic factor for 
increasing OS and disease survival factor.

GENETIC ALTERATIONS AND MOLECULAR 
BIOMARKERS OF OSCC

Genetic Alterations

OSCC, like most other malignancies, arises from the 
accumulation of a number of discrete genetic events that 
lead to invasive cancer. These changes occur in genes 
that encode for proteins, which control the cell cycle, cell 
survival, cell migration, and angiogenesis.[6-8]

Previous cytogenetic analysis has shown a series 
of alteration in OSCC, most frequently in chromo-
some 9, chromosome 17 gene as well as 3P, 13q21, 
and 18q21. Correlation between hypermethylation of 
TP73, PIK3R5, and CELSR3, 42 down-regulation of 
MYC, 43 SMAD3/TGFBR2 genes mutation, am-gene, 
and survival rate in OSCC patients have been reported. 
Moreover, proteomic analysis of OSCC specimen 
revealed the correlation of 13 RNAs with their 
encoded proteins implying transcription control with 
survival rate. Among these, reduction of DSP, PKP1, 

and TRIM is directly related to poorer disease-specific 
survival.[9]

Cancers including head-and-neck SCC (HNSCC) 
arise from the accumulation of genetic and epigenetic 
changes along with abnormalities in cancer-associated 
signaling pathways mentioned by Hannah Weinberg. 
These include:
1. Limitless replicative potential of tumors
2. Self-Sufficiency in growth signals
3. Insensitivity to anti-growth signals
4. Evade apoptosis
5. Increased angiogenesis and
6. Invasion and metastasis.

THE CELLULAR MICROENVIRONMENT OF HNSCC

Cancer-associated Fibroblasts (CAFs)

Commonly activated in tumors, these activated fibro-
blasts, termed CAFs, share many similarities with acti-
vated fibroblasts or myofibroblasts found in wounds 
and in inflammatory sites. CAFs are the most abundant 
cells of the tumor microenvironment. CAFs are usually 
recognized by the expression of α-smooth muscle actin, 
similar to myofibroblasts present at the site of wound 
healing and chronic inflammation, which is absent in 
normal dermal fibroblasts. CAFs might differentiate 
locally from normal stromal fibroblasts of surrounding 
tissue or from bone marrow-derived mesenchymal stem 
cells recruited to the tumor.[10-13]

Tumor-Associated Macrophages

Infiltrating inflammatory cells in HNSCC include 
monocytes, dendritic cells, and macrophages, which 
are normally present in a variety of reactive inflam-
matory lesions. The association between the bacterial 
profile and OSCC has a been studied. The numbers of 
Porphyromonas spp., Fusobacterium spp., and the bacte-
rial species were significantly higher in the OSCC tissue 
than in adjacent healthy mucosa. Using immunohisto-
chemical staining, it has been shown that the number 
of Porphyromonas gingivalis bacteria in gingival SCC 
was higher than that in healthy gingival tissue samples. 
Moreover, numerous live oral bacteria were detected in 
metastatic lymph nodes of oral cancer patients more fre-
quently than in uninvolved nodes, suggesting that the 
colonization by these bacteria may be associated with 
oral cancer.[14,15]

Tumor Infiltrating Lymphocytes

Almost 20 years ago, human tumour was described 
as “wounds that do not heal.” Indeed, changes occur-
ring in the microenvironment of the progressing tumor 
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resemble the process of chronic inflammation, which 
begins with ischemia followed by interstitial and cel-
lular edema, appearance of immune cells, and finally, 
growth of blood vessels and tissue repair.[16-18]

T lymphocytes are the gatekeepers of autoimmune 
regulation. Failure of T lymphocytes to recognize and 
eradicate malignant cells contributes to tumor develop-
ment. Tumors with a high infiltrate of lymphocytes are 
associated with improved prognosis. HNSCC tumors 
are influenced by several classes of T lymphocytes 
including T-helper cells, CD3, 4 or 8 positive T cells, nat-
ural killer cells, regulatory T cells, and myeloid progen-
itor cells.

Depending on the subtype of T cells infiltrating the 
tumor, the tumor experiences growth promotion or 
regression.[19]

ENDOTHELIAL CELLS

Endothelial cells when stimulated by the growth factors 
form blood vessels that facilitate tumor growth and dis-
semination. HNSCC cells directly bind to endothelial 
cells through adhesion molecules including intercellu-
lar cell adhesion molecule-1, CD44, lymphocyte func-
tion-associated antigen-3, and integrin chains.[20,21]

Direct binding of HNSCC to endothelial cells is a 
prerequisite for the penetration of metastasis through 
the vasculature. In addition, direct interaction between 
HNSCC and endothelial cells triggers Notch-1 signaling 
in endothelial cells promoting capillary tubule forma-
tion.[22]

LYMPHATIC CELLS, PERICYTES, MAST 
CELLS, AND OTHER CELLS IN THE TUMOR 
MICROENVIRONMENT

In addition to blood vessels, HNSCC is typically 
infiltrated by lymphatic vessels, a process known as 
lymphangiogenesis. Lymph vessels are typically dis-
tributed throughout the tumor as well as in the peri-
tumoral regions. Metastasis to regional lymph nodes 
commonly occurs in HNSCC and correlates with poor 
prognosis.[23-25]

Pericytes are contractile stromal cells closely asso-
ciated with vascular endothelial cells that stabilize the 
capillary walls. In the absence of pericytes, blood ves-
sels are unstable and undergo regression. Pericytes 
influence the proliferation, migration, and maturation 
of endothelial cells. In tumors, pericytes are loosely 
associated with endothelial cells resulting in increased 
capillary leakiness.

Mast cells are white blood cells that directly asso-
ciate with endothelial cells stimulating vascular tube 
formation. As HNSCC progresses, there is an increase 

in mast cell numbers that correlated with angiogenesis 
suggesting a role in angiogenesis.

The oral cavity and associated areas of the head and 
neck region are exposed to several microorganisms. 
Metaproteomic analyses of human salivary microbiota 
revealed a large number of oral bacteria that are met-
abolically active and actively engaged in protein syn-
thesis. The role of the human oral microbiome in tumor 
pathogenesis remains largely unknown. It is well known 
that bacteria associated with periodontitis, a condition 
caused by chronic inflammation of the gums, poses an 
independent risk factor for HNSCC. HPV infection is a 
major risk factor for oropharyngeal SCC.[26]

THE CELLULAR MICROENVIRONMENT OF HNSCC

Although effective antitumor immune responses 
likely involve many components of the immune sys-
tem, T-cells continue to be considered as the critical 
immune cells involved in antitumor immunity. T lym-
phocytes are considered an essential component of 
antitumor immunity, with CD8+ T cells serving as 
cytotoxic effector cells and CD4+ Th1 cells serving to 
“help” and enhance the magnitude and duration of 
the antitumor responses. However, CD4+ Th2 cells 
and CD4+ T regulatory cells are capable of suppress-
ing effective CD8+ antitumor responses. Several 
investigators have found dysfunctional circulating 
and tumor-infiltrating T cells in HNSCC patients, 
with functional assays identifying multiple defects in 
T-cell activation and effector function, suggesting that 
the tumor has successfully suppressed an otherwise 
robust lymphocytic response patterns of tumor-re-
lated leukocyte infiltration varying between primary 
tumors and metastatic lymph nodes in HNSCC with 
a local decrease in the number of CD8+ T-cells and 
increase in CD20+ B-cells.[23,27]

CONCLUSION

A deeper understanding of the factors that cause immune 
suppression in OSCCs might be relevant for the devel-
opment of novel anticancer therapies. The worse prog-
nosis of these patients has been linked to hypoxia and 
hypoxia-induced immune escape. Impaired anti-tumor 
responses of OSCC patients are caused not only by the 
tumor itself and by the presence of functional defects 
or apoptosis of both circulating and tumor-infiltrating 
T cells but also by soluble factors of the tumor micro-
environment including soluble factors and the hypoxic 
microenvironment, which leads to an accumulation of 
immune suppressive cells, like TAM, Tregs, and MDSCs 
macrophages as well as a downregulation in the func-
tion and activity of T lymphocytes and DCs. 
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However, the mechanisms by which changes in stro-
mal cells facilitate HNSCC growth are not completely 
understood at present. Increased understanding of the 
mechanisms involved in the complex crosstalk between 
cells and the tumor microenvironment hold great prom-
ise for designing strategies to target HNSCC effectively.
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